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The order of magnitude of the flow velocity due to  the entrainment into an axisym- 
metric, laminar or turbulent jet and an axisymmetric laminar plume, respectively, 
indicates that viscosity and non-slip of the fluid a t  solid walls are essential effects 
even for large Reynolds numbers of the jet or plume. An exact similarity solution of 
the Navier-Stokes equations is determined such that both the non-slip condition a t  
circular-conical walls (including a plane wall) and the entrainment condition a t  the 
jet (or plume) axis are satisfied. A uniformly valid solution for large Reynolds numbers, 
describing the flow in the laminar jet region as well as in the outer region, is also given. 
Comparisons show that neither potential flow theory (Taylor 1958) nor viscous flow 
theories that disregard the non-slip condition (Squire 1952; Morgan 1956) provide 
correct results if the flow is bounded by solid walls. 

1. Introduction 
It is a common assumption that the flow induced by a slender (i.e. high-Reynolds- 

number) jet is, in a first approximation, an inviscid potential flow. Taylor (1958) and 
Kraemer (1971) calculated such flows for various conditions (two-dimensional and 
axisymmetric, forced and buoyant, with and without walls). On the other hand, 
exact solutions for laminar, axisymmetric jets emerging from a hole in a plane or 
conical wall were given by Squire (1952) and Morgan (1956), respectively. Their 
solutions satisfy the boundary condition of zero velocity normal to  the wall but not 
the condition of zero tangential velocity. Nevertheless Squire (1952) noted that the 
inflow into the laminar jet is a viscous flow even in the limiting case of a very high 
speed jet. 

Recently Potsch (1980) reconsidered and generalized the exact solutions for axi- 
symmetric laminar jets with arbitrary Reynolds numbers Re = g * / v  (kinematic 
momentum flux 27rX and kinematic viscosity v). Studying the limiting case Re -+ 00, 

Potsch showed that in the presence of walls the flow induced by the jet does not agree 
with the results of the potential flow theory. But, as in Squire’s (1952) and Morgan’s 
(1956) investigations, there is a non-zero tangential velocity a t  the wall in Potsch’s 
solutions. Furthermore, both Morgan and Potsch state that a non-trivial similarity 
solution for the jet flow satisfying the non-slip condition at  conical walls (including 
the plane wall normal to the jet axis) does not exist. 

I n  this paper it is shown that a non-trivial similarity solution satisfying the non- 
slip condition at the walls exists in the limiting case Re 4 03. The solution is given 
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FIGURE 1 .  Flow regions and co-ordinates. 

for the axisymmetric flow induced by a (forced) jet or a plume. The results are re- 
markably different from those commonly presented in the literature (e.g. Schlichting 
1979, figures 11.5 and 24.10 or Rosenhead 1963, figure 111.11). 

2. The importance of viscosity in the outer flow region 
Consider an axisymmetric slender jet emerging from a point source of momentum 

flux M or an axisymmetric slender plume emerging from a point source of heat flux 
Q (figure 1). It is convenient to introduce a kinematic momentum flux @ and a 
buoyancy flux Q according to the relations 

with constant values of density p, specific heat capacity cp, thermal expansivity p, 
and gravity acceleration g. Owing to  the coefficients 277 in equation (1)  both and 0 
are referred to the unit azimuthal angle. Only steady flows will be considered. 

It follows from the conservation equations of mass, momentum and energy that 
the volume entrainment rate per unit of length of both the laminar jet and the laminar 
plume is equal to 877Kv where K is a dimensionless constant and v is the kinematic 
viscosity. Schlichting’s solution of the boundary-layer equations for the laminar jet 
gives K = 1 (cf. Schlichting 1979, p. 233). I n  case of a laminar plume, analytical 
solutions for Prandtl numbers Pr = 1 and Pr = 2 are known, and numerical results 
for some other values of Pr are also available (Fujii 1963; Mollendorf & Gebhart 1974). 
The values of K obtained from those results are given in table 1 .  The turbulent jet, 
but not the turbulent plume, also has a constant entrainment rate per unit length. 
According to Schlichting (1979) p. 749, i t  is given by 0.404(2nR)g. If this is, as in the 
laminar case, put equal to  8vKv we obtain K = 0.0403 Re with jet Reynolds number 
Re = M * / v .  

Because of entrainment, a flow is induced in the region outside the jet or plume. 
As far as the general discussion in this section is concerned there are no restrictions 
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Laminar plume 
Laminar Turbulent ---------hl_------- -7 

jet jet Pr = 0.01 0.7 1 2 7 10 

K 1 0.0403 Re 120 1.88t 1.5 1 0.77 0.67 
- - - - (Re = z * / v )  - 1.982 

t According to Fujii (1963). 
1 According to Mollendorf & Gebhart ( 1  974). 

TABLE 1 .  Entrainment constant K .  

with respect to the shape of the wall or the symmetry of the induced flow, i.e. it can 
be any three-dimensional flow. Furthermore, the induced flow can be considered a 
laminar one even if the jet flow is turbulent since the turbulent jet is bounded by a 
well-defined (though irregularly moving) surface across which the entrainment of non- 
turbulent fluid occurs (cf. Rotta, 1972, p. 162; Townsend 1976, p. 209). With respect 
to the outer flow region, the slender laminar or turbulent jet and the laminar plume, 
respectively, act as a line mass sink of constant strength. Thus, the induced flow has 
to satisfy the following boundary conditions at  the jet or plume axis in terms of 
spherical co-ordinates r ,  I3 with velocity components vr, vg (figure 1): 

lim (eve) = - 4 K v / r ;  
e-to 

l i m ( 2 )  = 0. 
e 

We may mention that from the point of view of the method of matched asymptotic 
expansions, equations (2a,  b )  are conditions for matching the inner solution (jet or 
plume flow) with the outer solution (induced flow). 

Equation ( 2 a )  shows that in the outer flow region, where I3 is of order 1, ve is of 
order Kv/r. Furthermore, the entrainment into the jet (or plume) for a length r has 
to be balanced by a radial volume flux through a spherical surface of radius r .  Hence 
v, is also of the order Kv/r in the outer flow region. With the characteristic length of 
order r we finally obtain that the local Reynolds number Re* = Ivlr/v is of the order 
of K in the outer region. Viscosity is expected to be of importance if Re* is of order 1. 

Let us now recall that K = 1 for a laminar jet and K = O(1) for a laminar plume 
except in the limiting case Pr + 0; ef. table 1. Therefore, viscosity is important in the 
whole flow field induced by an axisymmetric laminar jet or plume no matter how 
large the Reynolds number of the jet (Re = %ff : / v )  or plume (Re = & f r b - g )  may be. 
For a turbulent jet, however, the jet Reynolds number must not be too large (say 
< 500) in order to  ensure that K remains of order 1 ,  cf. table 1 .  In  this case, too, the 
(time-averaged) outer flow is a viscous one. 

The differential equations governing the viscous outer flow are the full Navier- 
Stokes equations. If there are no solid walls bounding the flow, solutions of the poten- 
tial flow equation (Laplace's equation) can satisfy the Navier-Stokes equations and 
all boundary conditions of the outer flow. Thus the solutions given by Taylor (1958) 
or Kraemer (1971) are the correct ones in case of an unbounded fluid. If, however, the 
fluid is bounded by solid walls (figure I ) ,  solutions of the potential flow equation 
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cannot, in general, satisfy the non-slip condition at the walls. I n  this case the full 
Navier-Stokes equations subject t o  appropriate boundary conditions, i.e. non-slip 
conditions at  the walls and equations (213, b )  a t  the jet axis, have to  be solved in 
order to find the outer flow field. 

It should be emphasized that the conclusions drawn so far are valid for axisym- 
metric free jets (or plumes) only. I n  the case of plane flow as well as in the case of an 
axisymmetric wall jet it turns out that  the local Reynolds number in the outer flow 
is of the same order of magnitude as the Reynolds number in the jet flow. If  the latter 
is very large, boundary-layer equations apply to  the jet flow, whereas viscosity is 
negligible in a first approximation of the outer flow. 

3. The wall shear stress as a second-order term in the momentum balance 
When an attempt is made to solve the Navier-Stokes equations for the flow induced 

by an axisymmetric jet (or plume) one might recall Morgan’s (1956) and Potsch’s 
(1980) statement on the non-existence of an appropriate similarity solution for arbi- 
trary (but finite) jet Reynolds numbers. Potsch (1980) also indicated that the solution 
cannot exist because, due to  a singularity a t  the jet origin, the viscous force a t  the wall 
would be infinite, which contradicts the finite momentum source. I n  the limit of an 
infinite jet Reynolds number, however, the induced (outer) flow becomes singular a t  
the jet axis. This resembles the swirling vortex flow studied by Serrin (1971), where 
a similarity solution satisfying the non-slip condition at the wall exists if, and only if, 
the flow is singular a t  the axis. 

Therefore an investigation of the shear stress a t  the wall seems to be in order. For 
what follows it will be assumed that K = O(1). Since the characteristic length in the 
outer region is of order r and the velocity is of order v /r ,  the order of magnitude of the 
wall shear stress 7w is given by 

7 w l P  = (+)20(1). (3) 

Thus the viscous force F exerted on a wall of surface area A becomes 

With dA proportional to rdr,  the integral of (4) has a non-integrable singularity a t  
r = 0 which leads to  an infinite force. Furthermore, if the wall extends to infinity, 
the integral diverges also as r + 00. But because the force is proportional to  u2, it is 
of the order of Re-2 when compared with the kinematic momentum flux Xf from the 
source. As Re + 00, the viscous wall force is a higher-order term which need not be 
taken into account in a first-order momentum balance. This only justifies the usual 
assumption that the momentum flux is constant in a slender jet even if the outer flow 
field is bounded by solid walls. A higher-order theory will have t o  deal with the region 
near r = 0, but this is beyond the scope of the present paper. It should be mentioned, 
however, that a similar problem arises in the boundary-layer theory for a flat plate, 
where the second-order wall shear stress has a non-integrable singularity a t  the leading 
edge (cf. Van Dyke 1975, p. 137). 
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FIGURE 2(a), For legend see next page. 

4. Solution for axisymmetric outer flows bounded by conical walls 
Consider an axisymmetric jet or plume emerging from the apex of a circular- 

conical wall with axes (0 = 0) of cone and jet or plume coinciding. Let the semi-vertex 
angle of the cone be Ow, with 0 c 0, < T .  If 0, = in, the jet emerges from a plane wall. 
The limiting case 0, -+ T corresponds to  a jet emerging from the apex of a very slender, 
conical tube. 

It will be convenient to use spherical co-ordinates with a new variable 5 defined by 

(=  $(1-cos8). 

tW = $( 1 - cos 0,). 
At the wall we have f = f,, with 

Introducing a Stokes’ stream function $ in order to satisfy the continuity equation, 
eliminating the pressure from the Navier-Stokes equations, separating the variables 

by writing $ = 4 v r m  (7)  
FLM 108 3 
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FIGURE 2. Flow induced by an axisymmetric, slender jet or plume emerging from a plane well 
perpendicular to the axis of the jet or plume (19, = 90"). Regarding K cf. table 1. (a) Dimension- 
less stream function and its derivative: -- , present theory: - - - , potential flow theory. ( b )  
Representative streamlines (arbitrary unit of length). 

and integrating three times we obtain, according to  Batchelor (1970), p. 207, the 
following ordinary differential equation for the dimensionless stream function f (5) : 

&( 1 - Qf' - (1  - 2&)f+f2 = c,+ c,t + c2p; (8) 

C,, C, and C, are arbitrary constants of integration, and primes denote derivatives 
with respect to E .  Since the velocity components in terms of the dimensionless stream 
function are 

the boundary conditions a t  the wall become 

f(&,) = 0, f ' ( & t U )  = 0. (10) 

Further boundary conditions are provided by ( 2 a )  and ( 2 b )  which yield 

and 

The latter condition is satisfied iff " ( 6 )  remains bounded as & + 0. From the boundary 
conditions (1 1 )  and ( lo) ,  we obtain, respectively, 

co = K ( K -  1 )  (13) 

and c 2  = - (CO+~I"Gl. (14) 

Differentiating equation (8) with respect to 6 ,  the condition ( 12) may be used to derive 
the relation 

c, = 2K[l +f'(O)]. (15) 
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FIGURE 3(a).  For legend see next page. 

The problem can now be stated as follows: Determine f'(0) such that the solution of 
the first-order differential equation (8) with constants C,, C, and C, given by equations 
(13) to (15) satisfies the boundary condition f (fw) = 0. This problem has been solved 
for various values of K and 6, by a Runge-Kutta shooting method. Some results are 
presented in figures 2 (a)  and 3 (a) .  

For the purpose of comparisons i t  should be mentioned that in an inviscid (potential) 
flow theory the linear terms of equation (8) are omitted. Retaining only the nonlinear 
term and disregarding the second one of the boundary conditions ( lo ) ,  we obtain the 
solution 

.f = K (  1 - f / f J  (potential flow). (16) 

This is in agreement with Taylor's (1958) results (for f ,  = 9 and f ,  = 1). 

3-2 
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FIGURE 3. Flow induced by an axisymmetric, laminar slender jet or plume (with Pr = 2 in 
case of the plume) emerging from the apex of right conical walls with various semi-vertex angles 
8,. (a)  Dimensionless stream function and its derivative. ( b )  Representative streamlines (arbi- 
trary unit of length). --, present theory; - - -, potential-flow theory. 

5. Results 
Using the results of the numerical integration, which are summarized in figures 

2(a)  and 3(a ) ,  the velocity components can easily be determined from (9). Besides, 
the flow field can be illustrated by drawing the streamlines $ = const. which are 
obtained from (7). Since, according to (7), r is proportional to $ if (or 0) is kept 
constant, it is sufficient to draw only one representative streamline. Some results are 
presented in figures 2 ( b )  and 3 (b ) .  

The diagrams clearly show that potential flow theory does not provide correct 
results for outer flows bounded by solid walls. Note that the streamlines of the poten- 
tial flows are always too close to the walls when compared to  the correct solutions. 
This can be explained by the decrease of the radial flow velocity near the walls due 
to viscosity effects. 

It is remarkable that Squire’s (1952) solution, which is an exact solution of the 
Navier-Stokes equations but does not satisfy the non-slip condition a t  the wall, is 
even more unrealistic than the potential flow theory, cf. figure 2 ( b ) .  

It can be seen from figure 3 (a ) ,  however, that in the limiting case of a very slender 
tube (Ew --f 1, 8, --f n) the influence of the wall is felt only in a thin, axisymmetric 
layer, where f”(6) becomes very large. Besides, viscosity effects are, of course, also 
confined to a thin boundary layer a t  the wall if the entrainment constant K is very 
large since this results in very large values of the locd Reynolds number Re*; cf. 
figure 2(a), K = 10. 

From the point of view of the method of matched asymptotic expansions, the results 
presented so far are outer solutions of laminar flows as Re --f 00. Inner solutions are 
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FICUXE 4. Streamlines of an axisymmetric laminar jet flow emerging from a point source in a 
plane wall perpendicular to the jet axis (Oto = 90"). Uniformly valid first approximation, 
Re = 20, arbitrary unit of length. 

provided by the well-known similarity solutions of the boundary-layer equations for 
laminar jets and plumes. In  case of the jet there is an analytic solution (cf. Schlichting 
1979, p. 230), which is of the same similarity structure as our outer solution according 
to ( 7 ) .  In terms of the stretched (inner) co-ordinate E defined by 

= #Re2& Re2 = R/v2 ( 1 7 )  

the inner solution is fi = Z/U + El. ( 1 8 )  

We can now find a uniformly valid solution f+ by adding the inner solution fi to the 
outer solution f ,  and subtracting the common part of the two expansions, i.e. f(0). 
Since f(0) = K = 1 for a laminar jet, we obtain 

f+ = f - ( l + # R e a ( ) - '  (laminar jet, Re > 1). ( 1 9 )  

Streamlines ~ = 4vrf+(() = const. are shown in figure 4 for a typical example. Note 
that the distance between neighbouring streamlines near the wall is distinctly larger 
than between corresponding streamlines further away from the wall. This is, of 
course, a consequence of the fact that the velocity vanishes as the wall is approached. 
Thus the streamline pattern shown in figure 4 is quite different from the well-known 
picture obtained by Squire (1952)  with a s o l u t h  that does not satisfy the non-slip 
condition at the wall. We refrained from including Squire's result in figure 4 since in 
the outer region the uniformly valid solution is equivalent to the outer flow field 
solution which was already compared with t,he results of other theories in figure 2 ( b ) .  
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6. Conclusions 
( 1 )  Although slender jets or plumes with very large Reynolds numbers are con- 

sidered, i.e. Re B 1,  convective terms and viscous terms are of the same order of 
magnitude in the outer flow that is induced by 

(a )  an axisymmetric laminar jet; 
( b )  an axisymmetric laminar plume with Pr-l = O( 1); 
( c )  a turbulent jet with an entrainment constant K = O( 1 ) .  
(2) If there are no walls, solutions of the potential equation can satisfy the viscous- 

flow equations (Navier-Stokes equations) and all boundary conditions in the outer 
flow region (Taylor 1958; Kraemer 1971). 

(3) If the viscous flow is bounded by solid walls the non-slip condition has to be 
satisfied a t  the walls. Since this cannot in general be accomplished by solving the 
potential equation, the full Navier-Stokes equations have t o  be solved in the outer 
flow region. 
(4) Nevertheless an essential simplification is gained by considering an asymptotic 

expansion in terms of large Re. For, in case of Re = O(1) no similarity solution that 
gives a finite momentum flux from the jet source and satisfies the non-slip condition 
at  the wall can be found (Morgan 1956; Potsch 1980). 

(5) Similarity solutions for outer flows bounded by conical walls (including a plane 
wall) give velocity distributions and streamline patterns that differ appreciably from 
solutions obtained previously. Neither potential flow theory (Taylor 1958) nor viscous- 
flow theories that disregard the non-slip condition (Squire 1952; Morgan 1956) provide 
correct results if the flow is bounded by solid walls. 

The author’s attention was drawn to this problem by Dr K. Potsch and his work 
regarding a generalization of the Landau-Squire solution. The author would like to 
thank Mr G. Anestis for performing the numerical calculations. Stimulating discus- 
sions with Professors K. Gersten, K. Oswatitsch and S. Leibovich as well as helpful 
comments of referees are gratefully acknowledged. 
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